A few words about DNM2
Clinics, histology, genetics

> 100 families described (MTM1: 500, BIN1: 15)

Histology: fiber size variability, spoke of wheels

Genetics: Mutation “Hotspots” → prognosis possible

![Diagram showing the exons and mutations of DNM2 with associated phenotypes and percentages.](image)

- **Exon 8**
 - R368K
 - Neonatal
 - Intermediate
 - 20%
 - R369W
 - Child/adult
 - Variable
 - 10%

- **Exon 11**
 - R465W
 - Childhood
 - Moderate
 - 25%

- **Exon 14**
 - R522H
 - Adult-onset
 - Mild
 - 10%

- **Exon 16**
 - S619L
 - Neonatal
 - Severe
 - 10%
Nuclei during muscle development

Nuclei during muscle development

muscle cells → fusion → myotube → maturation → muscle fiber
Nuclei during muscle development

- **fusion**
- **maturation**

- muscle cells
- myotube
- muscle fiber

section
Nuclei during muscle development

"myotubular myopathy"

muscle fibers look like myotubes before maturation
Nuclei during muscle development

muscle cells, T-Tubules (MTM1, BIN1, DNM2 involved) involved in muscle structure

myotube, T-Tubules (MTM1, BIN1, DNM2 involved)

muscle fibers

section

“myotubular myopathy”
muscle fibers look like myotubes before maturation

MTM1, BIN1, DNM2, RYR1, TTN involved in muscle structure

Structure determines function
Nuclei during muscle development

"myotubular myopathy"

muscle fibers look like myotubes before maturation

MTM1, BIN1, DNM2, RYR1, TTN involved in muscle structure

Structure determines function
Nuclei during muscle development

“myotubular myopathy”
muscle fibers look like myotubes before maturation

structure determines function

MTM1, BIN1, DNM2, RYR1, TTN involved in muscle structure
Nuclei during muscle development

“myotubular myopathy”
muscle fibers look like myotubes before maturation

MTM1, BIN1, DNM2, RYR1, TTN involved in muscle structure

Structure determines function
Cross therapy
Idea and applications

Myotubular myopathy:
MTM1/DNM2 imbalance in muscle
Cross therapy
Idea and applications

Myotubular myopathy:
MTM1/DNM2 imbalance in muscle

Reduction of DNM 2 as therapy?
Cross therapy
Idea and applications

Myotubular myopathy:
MTM1/DNM2 imbalance in muscle

Reduction of DNM 2 as therapy?

Mice without MTM1 and less DNM2:
normal life span + almost normal force
Cross therapy
Idea and applications

Myotubular myopathy:
MTM1/DNM2 imbalance in muscle

Reduction of DNM 2 as therapy?

Mice without MTM1 and less DNM2:
normal life span + almost normal force

Centronuclear myopathy:
Similar MTM1/DNM2 imbalance in muscle

Same therapeutic approach for MTM / CNM?
How could we reduce DNM2 in patients?
In mice we removed DNM2 genetically

A gene is a fragment of a chromosome
It carries the information for a protein

DNM2 is like a manual to build a car
How could we reduce DNM2 in patients?

In mice we removed DNM2 genetically.

A gene is a fragment of a chromosome.
It carries the information for a protein.

DNM2 is like a manual to build a car.

A protein has an activity in the cell.
Dynamin 2 is the car.

Two possibilities to reduce DNM2:

1. At the DNA level: produce less dynamin.
uld we reduce DNM2 in patients?

In mice we removed DNM2 genetically.

A gene is a fragment of a chromosome. It carries the information for a protein.

DNM2 is like a manual to build a car.

A protein has an activity in the cell.

Dynamin 2 is the car.

Two possibilities to reduce DNM2

1. At the DNA level: produce less dynamin
How could we reduce DNM2 in patients?

In mice we removed DNM2 genetically

A gene is a fragment of a chromosome
It carries the information for a protein

DNM2 is like a manual to build a car

A protein has an activity in the cell

Dynamin 2 is the car

Two possibilities to reduce DNM2

1. At the DNA level: produce less dynamin 2
2. At the protein level: block dynamin 2